Identification of Genes Affecting Vacuole Membrane Fragmentation in Saccharomyces cerevisiae
نویسندگان
چکیده
The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.
منابع مشابه
Bem1p, a scaffold signaling protein, mediates cyclin-dependent control of vacuolar homeostasis in Saccharomyces cerevisiae.
How proliferating cells maintain the copy number and overall size of their organelles is not clear. We had previously reported that in the budding yeast Saccharomyces cerevisiae the G1 cyclin Cln3p is required for vacuolar (lysosomal) homotypic fusion and loss of Cln3p leads to vacuolar fragmentation. The Cdc42p GTPase is also required for vacuole fusion. Here we show that the scaffold protein ...
متن کاملSsh4, Rcr2 and Rcr1 affect plasma membrane transporter activity in Saccharomyces cerevisiae.
Nutrient uptake in the yeast Saccharomyces cerevisiae is a highly regulated process. Cells adjust levels of nutrient transporters within the plasma membrane at multiple stages of the secretory and endosomal pathways. In the absence of the ER-membrane-localized chaperone Shr3, amino acid permeases (AAP) inefficiently fold and are largely retained in the ER. Consequently, shr3 null mutants exhibi...
متن کاملSystematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level.
At the onset of nutrient limitation, the yeast Saccharomyces cerevisiae synthesizes glycogen to serve as a carbon and energy reserve. We undertook a systematic survey for the genes that affect glycogen accumulation by taking advantage of the strain deletion set generated by the Saccharomyces Genome Deletion Project. The strain collection analyzed contained some 4600 diploid homozygous null dele...
متن کاملNeo1 and phosphatidylethanolamine contribute to vacuole membrane fusion in Saccharomyces cerevisiae
NEO1 is an essential gene in budding yeast and belongs to a highly conserved subfamily of P-type ATPase genes that encode phospholipid flippases. Inactivation of temperature sensitive neo1ts alleles produces pleiomorphic defects in the secretory and endocytic pathways, including fragmented vacuoles. A screen for multicopy suppressors of neo1-2ts growth defects yielded YPT7, which encodes a Rab7...
متن کاملVacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole.
Delivery of proteins to the vacuole of the yeast Saccharomyces cerevisiae provides an excellent model system in which to study vacuole and lysosome biogenesis and membrane traffic. This organelle receives proteins from a number of different routes, including proteins sorted away from the secretory pathway at the Golgi apparatus and endocytic traffic arising from the plasma membrane. Genetic ana...
متن کامل